43. First Principles Study of C-C Coupling Pathways for CO Electrochemical Reduction Catalyzed by Cu(110)

Kuo T., Chou, J., Shen M., Hong Z., Chao T., Lu Q.* and Cheng M.*, The Journal of Physical Chemistry C, DOI: 10.1021/acs.jpcc.0c10736 (2021)

42. Evaluating Potential Catalytic Active Sites on Nitrogen-Doped Graphene for the Oxygen Reduction Reaction: An Approach Based on Constant-Electrode-Potential Density Functional Theory Calculation

Chen M., Chao, T., Shen M., Lu Q.* and Cheng M.*, The Journal of Physical Chemistry C, 124 (47), 25675–25685 (2020)


41. Understanding the electric and nonelectric field components of the cation effect on the electrochemical CO reduction reaction

Malkani A. S., Li J., Oliveira N. J., He M., Chang X., Xu B.* and Lu Q.*, Science Advances, 6, no. 45, eabd2569 (2020

40. Oxygen induced promotion of electrochemical reduction of CO₂ via co-electrolysis

He M.#, Li C.#, Zhang H., Chang X., Chen J. G., Goddard W. A., Cheng M.*, Xu B.* and Lu Q.*, Nature Communications, 11, 3844 (2020) (#contributed equally to this work)


39. Two-dimensional SnO₂ Nanosheets for Efficient Carbon Dioxide Electroreduction to Formate

Li J., Jiao J., Zhang H., Zhu P., Ma H., Chen C., Xiao H.* and Lu Q.*, ACS Sustainable Chemistry & Engineering, 8(12), 4975-4982 (2020)

38. Improving CO Electrochemical Reduction to CO Using Space Confinement between Gold or Silver Nanoparticles

Chang K., Jian X., Jeong H. M., Kwon Y., Lu Q.* and Cheng M.*, The Journal of Physical Chemistry Letter, 11(5), 1896-1902 (2020)

37. Impact of Forced Convection on Spectroscopic Observations of the Electrochemical CO Reduction Reaction

Malkani A. S., Li J., Anibal J., Lu Q.* and Xu B.*, ACS Catalysis, 10(2), 941-946 (2020)

36. Hydroxide is Not a Promoter of C2+ Product Formation in Electrochemical Reduction of CO on Copper

Li J., Wu D., Malkani A. S., Chang X., Cheng M., Xu B.* and Lu Q.*, Angewandte Chemie International Edition, 59(11), 4464-4469 (2020) (featured as cover picture)

35. Application of Ceria in CO₂ Conversion Catalysis

Chang K., Zhang H., Cheng M.* and Lu Q.*, ACS Catalysis, 10(1), 613-631 (2020)

34. Tailoring the Electrochemical Production of H₂O₂: Strategies for the Rational Design of High-performance Electrocatalysts

Zhang J., Zhang H., Cheng M.* and Lu Q.*, Small, 16(15), 1902845 (2020)

33. Constant Electrode Potential Quantum Mechanical Study of CO₂ Electrochemical Reduction Catalyzed by N-Doped Graphene

Chang K., Zhang H., Chen J. G., Lu Q.* and Cheng M.*, ACS Catalysis, 9(9), 8197-8207 (2019)

32. Computational and Experimental Demonstrations of One-pot Tandem Catalysis for Electrochemical Carbon Dioxide Reduction to Methane

Zhang H.#, Chang X.#Chen J. G., Goddard W. A., Xu B.*, Cheng M.* and Lu Q.*, Nature Communications, 10, 3340 (2019) (#contributed equally to this work)

31. Effectively Increased Efficiency for Electroreduction of Carbon Monoxide Using Supported Polycrystalline Copper Powder Electrocatalysts

Li J.#, Chang K.#, Zhang H., He M., Goddard W. A., Chen J. G., Cheng M. and Lu Q.*, ACS Catalysis, 9(6), 4709-4718 (2019(#contributed equally to this work)


30. Copper Atom-pair Catalyst Anchored on Alloy Nanowires for Selective and Efficient Electrochemical Reduction of CO₂

Jiao J.#, Lin R.#, Liu S.#, Cheong W.-C.#, Zhang C., Chen Z., Pan Y., Tang J., Wu K., Hung S.-F., Chen H. M., Zheng L., Lu Q., Yang X., Xu B., Xiao H.*, Li J., Wang D., Peng Q., Chen C.* and Li Y., Nature Chemistry, 11, 222-228 (2019(#contributed equally to this work)

29. CO Electroreduction: Current Development and Understanding of Cu-Based Catalyst

Zhang H.#, Li J.#, Cheng M.* and Lu Q.*, ACS Catalysis, 9(1), 49-65 (2019(#contributed equally to this work)


28. High Performance Carbon Dioxide Electrocatalytic Reduction by Easily-Fabricated Large Scale Silver Nanowire Arrays

Luan C., Shao Y.*, Lu Q.*, Gao S., Huang K., Wu H.* and Yao K., ACS Applied Materials & Interfaces, 10(21), 17950-17956 (2018)

27. A Cu-Ni Bimetallic Cathode with Nanostructured Copper Array for Enhanced Hydrodechlorination of Trichloroethylene (TCE)

Liu B., Zhang H., Lu Q., Li G.* and Zhang F.*, Science of the Total Environment, 635, 1417–1425 (2018)

26. Design of Single-Atom Co-N5 Catalytic Site: A Robust Electrocatalyst for CO₂ Reduction with Nearly 100% CO Selectivity and Remarkable Stability

Pan Y.#, Lin R.#, Chen Y.#, Liu S., Zhu W., Cao X., Chen W., Wu K., Cheong W., Wang Y., Zheng L., Lou J., Lin Y., Liu Y., Liu, C., Li J., Lu Q., Chen X., Wang D., Peng Q., Chen C.* and Li Y., Journal of the American Chemical Society, 140(12), 4218-4221 (2018(#contributed equally to this work)

25. The Importance of Grand-Canonical Quantum Mechanical Methods to Describe the Effect of Electrode Potential on the Stability of Intermediates Involved in both Electrochemical CO₂ Reduction and Hydrogen Evolution

Zhang H., Goddard W. A., Lu Q.* and Cheng M.*, Physical Chemistry Chemical Physics, 20(4), 2549-2557 (2018)

24. Grand Canonical Quantum Mechanical Study of the Effect of the Electrode Potential on N-Heterocyclic Carbene Adsorption on Au Surfaces

Chang K., Chen J. G., Lu Q.* and Cheng M.*, The Journal of Physical Chemistry C, 121(44), 24618-24625 (2017)

23. Quantum Mechanical Study of N-Heterocyclic Carbene Adsorption on Au Surfaces

Chang K., Chen J. G., Lu Q.* and Cheng M.*, The Journal of Physical Chemistry A, 121(13), 2674–2682 (2017)

22. Electrochemical CO₂ Reduction: Electrocatalyst, Reaction mechanism, and Process Engineering

Lu Q. and Jiao F.*, Nano Energy, 29, 439-456 (2016)

Prior to joining to Tsinghua

21. Nanoporous Cu-Al-Co Alloys for Selective Furfural Hydrodeoxygenation to 2-methylfuran

Hutchings S. G., Luc W., Lu Q., Zhou Y., Vlachos D. G. and Jiao F.*, Industrial & Engineering Chemistry Research, 56(14), 3866–3872 (2017)

20. The Central Role of Bicarbonate in the Electrochemical Reduction of CO₂ on Gold

Dunwell D.#, Lu Q.#, Heyes J. M., Rosen J., Chen J. G., Yan Y.*, Jiao F.* and Xu B.*, Journal of the American Chemical Society, 139(10), 3774–3783 (2017) (#contributed equally to this work)

19. Ordered Mesoporous Metal Carbides with Enhanced Anisole Hydrodeoxygenation Selectivity

Lu Q.#, Chen C.-J.#, Luc W. W., Chen J. G., Bhan A.* and Jiao F.*, ACS Catalysis, 6(6), 3506-3514 (2016) (#contributed equally to this work)


18. Electrodeposited Zn Dendrites with Enhanced CO Selectivity for Electrocatalytic CO₂ Reduction

Rosen J., Hutchings G. S., Lu Q., Forest R. V., Moore A. and Jiao F.*, ACS Catalysis, 5(8), 4586-4591 (2015)


17. Mechanistic Insights into the Electrochemical Reduction of CO₂ to CO on Nanostructured Ag Surfaces

Rosen J., Hutchings G. S., Lu Q., Rivera S., Zhou Y., Vlachos D. G. and Jiao F.*, ACS Catalysis, 5(7), 4293-4299 (2015)


16. Highly Porous Non-precious Bimetallic Electrocatalysts for Efficient Hydrogen Evolution

Lu Q., Hutchings G. S., Yu W., Zhou Y., Forest R.V., Tao R., Rosen J., Yonemoto B. T., Cao Z., Zheng H., Xiao J. Q., Jiao F.* and Chen J. G.*, Nature Communications, 6, 6567 (2015)


15. Oxygen Reduction at Very Low Overpotential on Nanoporous Ag Catalysts

Zhou Y.#, Lu Q.#, Zhuang Z., Hutchings G. S., Kattel S., Yan Y., Chen J. G.*, Xiao J. Q.* and Jiao F.*, Advanced Energy Materials, 5, 1500149 (2015) (#contributed equally to this work)


14. Effect of Pretreatment Atmosphere on the Particle Size and Oxygen Reduction Activity of Low-loading Platinum Impregnated Titanium Carbide Powder Electrocatalysts

Yang L., Kimmel Y. C., Lu Q. and Chen J. G.*, Journal of Power Sources, 287, 196-202 (2015)


13. Nanostructured Metallic Electrocatalysts for CO₂ Reduction

Lu Q., Rosen J. and Jiao F.*, Chemcatchem, 7(1), 38-47 (2015)

12. A Highly Selective and Efficient Electrocatalyst for Carbon Dioxide Reduction

Lu Q.#, Rosen J.#, Zhou Y., Hutchings G. S., Kimmel Y. C., Chen J. G. and Jiao F.*, Nature Communications, 5, 3242 (2014) (Featured in Science, 349, 1158 (2015); Highlighted by Science Daily, EurekAlert!, R&D, etc.) (#contributed equally to this work)

11. Nanostructured Flexible Mg-modified LiMnPO4 Matrix as High-rate Cathode Materials for Li-ion Batteries

Lu Q., Hutchings G. S., Zhou Y., Xin, H. L., Zheng H. and Jiao F.*, Journal of Material Chemistry A, 2(18), 6368-6373 (2014) (Most Accessed Article for 2014 in JMCA)

10. Synthesis, Structural Characterization, and Electrochemical Performance of Nanocasted Mesoporous Cu-/Fe-based Oxides

Jiao F.*, Hoang Y., Hutchings G. S. Yonemoto B. T., Lu Q. and Kleitz F.*, Journal of Material Chemistry A, 2(9), 3065-3071 (2014)

9. Nanostructured Electrodes for High-performance Pseudocapacitors

Lu Q., Chen J. G. and Xiao J. Q.*, Angewandte Chemie-International Edition, 52(7): 1882–1889 (2013)

8. Synthesis and Electrochemistry of Nanocrystalline M-TiO (M = Mn, Fe, Co, Ni, Cu) Anatase

Hutchings G. S., Lu Q. and Jiao F.*, Journal of The Electrochemical Society, 160(3): A511-A515 (2013)

7. Ordered Mesoporous Nickel Cobaltite Spinel with Ultra-high Supercapacitance

Lu Q., Chen Y., Li W., Chen J. G., Xiao J. Q. and Jiao F.*, Journal of Material Chemistry A, 1(6): 2331-2336 (2013)

6. Robust and Tunable One-way Magnetic Surface Plasmon Waveguide: An Experimental Demonstration

Shen. J., Liu S., Kou X., Fan X., Lu Q., Zhang H. and Xiao J. Q.*, Plasmonics, 7(2): 287-291 (2012)

5. Supercapacitor Electrodes with High-energy and power Densities Prepared from Monolithic NiO/Ni Nanocomposite

Lu Q., Lattanzi M. W., Chen Y., Kou X., Li W., Fan X., Unruh K. M., Chen J. G. and Xiao J. Q.*, Angewandte Chemie-International Edition, 50(30): 6847–6850 (2011) (Cover article; Highlighted in MaterialViews, ChemistryViews, PhysOrg, etc.)

4. Memory Effect in Magnetic Nanowire Arrays

Kou X., Fan X., Dumas R. K., Lu Q., Zhang Y., Zhu H., Zhang X., Liu K. and Xiao J. Q.*, Advanced Materials, 23(11): 1393–1397 (2011)

3. Damping Dependence in Microwave Assisted Magnetization Reversal

Chen Y., Fan X., Lu Q. and Xiao J. Q.*, Journal of Applied Physics, 110(5): 053905 (2011)

2. Fabrication, Formation Mechanism, and Magnetic Properties of Metal Oxide Nanotubes via Electrospinning and Thermal Treatment

Chen X., Unruh K. M., Ni C., Ali B., Sun Z., Lu Q., Deitzel J. and Xiao J. Q.*, Journal of Physical Chemistry C, 115(2): 373-378 (2011)

1. Differentiation of Bulk and Surface Contribution to Supercapacitance in Amorphous and Crystalline NiO

Lu Q., Mellinger Z. J., Wang W., Li W., Chen Y. Chen J. G. and Xiao J. Q.*, Chemsuschem, 3(12): 1267-1370 (2010)